2025-03-26 11:26:55 +08:00

89 lines
4.1 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class SegmentationPredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on a segmentation model.
This class specializes in processing segmentation model outputs, handling both bounding boxes and masks in the
prediction results.
Attributes:
args (Dict): Configuration arguments for the predictor.
model (torch.nn.Module): The loaded YOLO segmentation model.
batch (List): Current batch of images being processed.
Methods:
postprocess: Applies non-max suppression and processes detections.
construct_results: Constructs a list of result objects from predictions.
construct_result: Constructs a single result object from a prediction.
Examples:
>>> from ultralytics.utils import ASSETS
>>> from ultralytics.models.yolo.segment import SegmentationPredictor
>>> args = dict(model="yolo11n-seg.pt", source=ASSETS)
>>> predictor = SegmentationPredictor(overrides=args)
>>> predictor.predict_cli()
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize the SegmentationPredictor with configuration, overrides, and callbacks."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "segment"
def postprocess(self, preds, img, orig_imgs):
"""Apply non-max suppression and process detections for each image in the input batch."""
# Extract protos - tuple if PyTorch model or array if exported
protos = preds[1][-1] if isinstance(preds[1], tuple) else preds[1]
return super().postprocess(preds[0], img, orig_imgs, protos=protos)
def construct_results(self, preds, img, orig_imgs, protos):
"""
Construct a list of result objects from the predictions.
Args:
preds (List[torch.Tensor]): List of predicted bounding boxes, scores, and masks.
img (torch.Tensor): The image after preprocessing.
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
protos (List[torch.Tensor]): List of prototype masks.
Returns:
(List[Results]): List of result objects containing the original images, image paths, class names,
bounding boxes, and masks.
"""
return [
self.construct_result(pred, img, orig_img, img_path, proto)
for pred, orig_img, img_path, proto in zip(preds, orig_imgs, self.batch[0], protos)
]
def construct_result(self, pred, img, orig_img, img_path, proto):
"""
Construct a single result object from the prediction.
Args:
pred (np.ndarray): The predicted bounding boxes, scores, and masks.
img (torch.Tensor): The image after preprocessing.
orig_img (np.ndarray): The original image before preprocessing.
img_path (str): The path to the original image.
proto (torch.Tensor): The prototype masks.
Returns:
(Results): Result object containing the original image, image path, class names, bounding boxes, and masks.
"""
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto, pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto, pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
if masks is not None:
keep = masks.sum((-2, -1)) > 0 # only keep predictions with masks
pred, masks = pred[keep], masks[keep]
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)