# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class SegmentationPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a segmentation model. This class specializes in processing segmentation model outputs, handling both bounding boxes and masks in the prediction results. Attributes: args (Dict): Configuration arguments for the predictor. model (torch.nn.Module): The loaded YOLO segmentation model. batch (List): Current batch of images being processed. Methods: postprocess: Applies non-max suppression and processes detections. construct_results: Constructs a list of result objects from predictions. construct_result: Constructs a single result object from a prediction. Examples: >>> from ultralytics.utils import ASSETS >>> from ultralytics.models.yolo.segment import SegmentationPredictor >>> args = dict(model="yolo11n-seg.pt", source=ASSETS) >>> predictor = SegmentationPredictor(overrides=args) >>> predictor.predict_cli() """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize the SegmentationPredictor with configuration, overrides, and callbacks.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "segment" def postprocess(self, preds, img, orig_imgs): """Apply non-max suppression and process detections for each image in the input batch.""" # Extract protos - tuple if PyTorch model or array if exported protos = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] return super().postprocess(preds[0], img, orig_imgs, protos=protos) def construct_results(self, preds, img, orig_imgs, protos): """ Construct a list of result objects from the predictions. Args: preds (List[torch.Tensor]): List of predicted bounding boxes, scores, and masks. img (torch.Tensor): The image after preprocessing. orig_imgs (List[np.ndarray]): List of original images before preprocessing. protos (List[torch.Tensor]): List of prototype masks. Returns: (List[Results]): List of result objects containing the original images, image paths, class names, bounding boxes, and masks. """ return [ self.construct_result(pred, img, orig_img, img_path, proto) for pred, orig_img, img_path, proto in zip(preds, orig_imgs, self.batch[0], protos) ] def construct_result(self, pred, img, orig_img, img_path, proto): """ Construct a single result object from the prediction. Args: pred (np.ndarray): The predicted bounding boxes, scores, and masks. img (torch.Tensor): The image after preprocessing. orig_img (np.ndarray): The original image before preprocessing. img_path (str): The path to the original image. proto (torch.Tensor): The prototype masks. Returns: (Results): Result object containing the original image, image path, class names, bounding boxes, and masks. """ if not len(pred): # save empty boxes masks = None elif self.args.retina_masks: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto, pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto, pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) if masks is not None: keep = masks.sum((-2, -1)) > 0 # only keep predictions with masks pred, masks = pred[keep], masks[keep] return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)