2025-03-26 11:26:55 +08:00

84 lines
3.5 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class DetectionPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on a detection model.
This predictor specializes in object detection tasks, processing model outputs into meaningful detection results
with bounding boxes and class predictions.
Attributes:
args (namespace): Configuration arguments for the predictor.
model (nn.Module): The detection model used for inference.
batch (List): Batch of images and metadata for processing.
Methods:
postprocess: Process raw model predictions into detection results.
construct_results: Build Results objects from processed predictions.
construct_result: Create a single Result object from a prediction.
Examples:
>>> from ultralytics.utils import ASSETS
>>> from ultralytics.models.yolo.detect import DetectionPredictor
>>> args = dict(model="yolo11n.pt", source=ASSETS)
>>> predictor = DetectionPredictor(overrides=args)
>>> predictor.predict_cli()
"""
def postprocess(self, preds, img, orig_imgs, **kwargs):
"""Post-processes predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
self.args.classes,
self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
end2end=getattr(self.model, "end2end", False),
rotated=self.args.task == "obb",
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
return self.construct_results(preds, img, orig_imgs, **kwargs)
def construct_results(self, preds, img, orig_imgs):
"""
Construct a list of Results objects from model predictions.
Args:
preds (List[torch.Tensor]): List of predicted bounding boxes and scores for each image.
img (torch.Tensor): Batch of preprocessed images used for inference.
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
Returns:
(List[Results]): List of Results objects containing detection information for each image.
"""
return [
self.construct_result(pred, img, orig_img, img_path)
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
]
def construct_result(self, pred, img, orig_img, img_path):
"""
Construct a single Results object from one image prediction.
Args:
pred (torch.Tensor): Predicted boxes and scores with shape (N, 6) where N is the number of detections.
img (torch.Tensor): Preprocessed image tensor used for inference.
orig_img (np.ndarray): Original image before preprocessing.
img_path (str): Path to the original image file.
Returns:
(Results): Results object containing the original image, image path, class names, and scaled bounding boxes.
"""
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])