# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class DetectionPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a detection model. This predictor specializes in object detection tasks, processing model outputs into meaningful detection results with bounding boxes and class predictions. Attributes: args (namespace): Configuration arguments for the predictor. model (nn.Module): The detection model used for inference. batch (List): Batch of images and metadata for processing. Methods: postprocess: Process raw model predictions into detection results. construct_results: Build Results objects from processed predictions. construct_result: Create a single Result object from a prediction. Examples: >>> from ultralytics.utils import ASSETS >>> from ultralytics.models.yolo.detect import DetectionPredictor >>> args = dict(model="yolo11n.pt", source=ASSETS) >>> predictor = DetectionPredictor(overrides=args) >>> predictor.predict_cli() """ def postprocess(self, preds, img, orig_imgs, **kwargs): """Post-processes predictions and returns a list of Results objects.""" preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, self.args.classes, self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), end2end=getattr(self.model, "end2end", False), rotated=self.args.task == "obb", ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) return self.construct_results(preds, img, orig_imgs, **kwargs) def construct_results(self, preds, img, orig_imgs): """ Construct a list of Results objects from model predictions. Args: preds (List[torch.Tensor]): List of predicted bounding boxes and scores for each image. img (torch.Tensor): Batch of preprocessed images used for inference. orig_imgs (List[np.ndarray]): List of original images before preprocessing. Returns: (List[Results]): List of Results objects containing detection information for each image. """ return [ self.construct_result(pred, img, orig_img, img_path) for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]) ] def construct_result(self, pred, img, orig_img, img_path): """ Construct a single Results object from one image prediction. Args: pred (torch.Tensor): Predicted boxes and scores with shape (N, 6) where N is the number of detections. img (torch.Tensor): Preprocessed image tensor used for inference. orig_img (np.ndarray): Original image before preprocessing. img_path (str): Path to the original image file. Returns: (Results): Results object containing the original image, image path, class names, and scaled bounding boxes. """ pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])