2025-03-26 11:26:55 +08:00

140 lines
6.6 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import torch
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils import LOGGER
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.utils.plotting import plot_images
class ClassificationValidator(BaseValidator):
"""
A class extending the BaseValidator class for validation based on a classification model.
This validator handles the validation process for classification models, including metrics calculation,
confusion matrix generation, and visualization of results.
Attributes:
targets (List[torch.Tensor]): Ground truth class labels.
pred (List[torch.Tensor]): Model predictions.
metrics (ClassifyMetrics): Object to calculate and store classification metrics.
names (Dict): Mapping of class indices to class names.
nc (int): Number of classes.
confusion_matrix (ConfusionMatrix): Matrix to evaluate model performance across classes.
Methods:
get_desc: Return a formatted string summarizing classification metrics.
init_metrics: Initialize confusion matrix, class names, and tracking containers.
preprocess: Preprocess input batch by moving data to device.
update_metrics: Update running metrics with model predictions and batch targets.
finalize_metrics: Finalize metrics including confusion matrix and processing speed.
postprocess: Extract the primary prediction from model output.
get_stats: Calculate and return a dictionary of metrics.
build_dataset: Create a ClassificationDataset instance for validation.
get_dataloader: Build and return a data loader for classification validation.
print_results: Print evaluation metrics for the classification model.
plot_val_samples: Plot validation image samples with their ground truth labels.
plot_predictions: Plot images with their predicted class labels.
Examples:
>>> from ultralytics.models.yolo.classify import ClassificationValidator
>>> args = dict(model="yolo11n-cls.pt", data="imagenet10")
>>> validator = ClassificationValidator(args=args)
>>> validator()
Notes:
Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize ClassificationValidator with dataloader, save directory, and other parameters."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.targets = None
self.pred = None
self.args.task = "classify"
self.metrics = ClassifyMetrics()
def get_desc(self):
"""Return a formatted string summarizing classification metrics."""
return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc")
def init_metrics(self, model):
"""Initialize confusion matrix, class names, and tracking containers for predictions and targets."""
self.names = model.names
self.nc = len(model.names)
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify")
self.pred = []
self.targets = []
def preprocess(self, batch):
"""Preprocess input batch by moving data to device and converting to appropriate dtype."""
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
batch["cls"] = batch["cls"].to(self.device)
return batch
def update_metrics(self, preds, batch):
"""Update running metrics with model predictions and batch targets."""
n5 = min(len(self.names), 5)
self.pred.append(preds.argsort(1, descending=True)[:, :n5].type(torch.int32).cpu())
self.targets.append(batch["cls"].type(torch.int32).cpu())
def finalize_metrics(self, *args, **kwargs):
"""Finalize metrics including confusion matrix and processing speed."""
self.confusion_matrix.process_cls_preds(self.pred, self.targets)
if self.args.plots:
for normalize in True, False:
self.confusion_matrix.plot(
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
)
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
self.metrics.save_dir = self.save_dir
def postprocess(self, preds):
"""Extract the primary prediction from model output if it's in a list or tuple format."""
return preds[0] if isinstance(preds, (list, tuple)) else preds
def get_stats(self):
"""Calculate and return a dictionary of metrics by processing targets and predictions."""
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def build_dataset(self, img_path):
"""Create a ClassificationDataset instance for validation."""
return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)
def get_dataloader(self, dataset_path, batch_size):
"""Build and return a data loader for classification validation."""
dataset = self.build_dataset(dataset_path)
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
def print_results(self):
"""Print evaluation metrics for the classification model."""
pf = "%22s" + "%11.3g" * len(self.metrics.keys) # print format
LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5))
def plot_val_samples(self, batch, ni):
"""Plot validation image samples with their ground truth labels."""
plot_images(
images=batch["img"],
batch_idx=torch.arange(len(batch["img"])),
cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names,
on_plot=self.on_plot,
)
def plot_predictions(self, batch, preds, ni):
"""Plot images with their predicted class labels and save the visualization."""
plot_images(
batch["img"],
batch_idx=torch.arange(len(batch["img"])),
cls=torch.argmax(preds, dim=1),
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred