# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import torch from ultralytics.data import ClassificationDataset, build_dataloader from ultralytics.engine.validator import BaseValidator from ultralytics.utils import LOGGER from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix from ultralytics.utils.plotting import plot_images class ClassificationValidator(BaseValidator): """ A class extending the BaseValidator class for validation based on a classification model. This validator handles the validation process for classification models, including metrics calculation, confusion matrix generation, and visualization of results. Attributes: targets (List[torch.Tensor]): Ground truth class labels. pred (List[torch.Tensor]): Model predictions. metrics (ClassifyMetrics): Object to calculate and store classification metrics. names (Dict): Mapping of class indices to class names. nc (int): Number of classes. confusion_matrix (ConfusionMatrix): Matrix to evaluate model performance across classes. Methods: get_desc: Return a formatted string summarizing classification metrics. init_metrics: Initialize confusion matrix, class names, and tracking containers. preprocess: Preprocess input batch by moving data to device. update_metrics: Update running metrics with model predictions and batch targets. finalize_metrics: Finalize metrics including confusion matrix and processing speed. postprocess: Extract the primary prediction from model output. get_stats: Calculate and return a dictionary of metrics. build_dataset: Create a ClassificationDataset instance for validation. get_dataloader: Build and return a data loader for classification validation. print_results: Print evaluation metrics for the classification model. plot_val_samples: Plot validation image samples with their ground truth labels. plot_predictions: Plot images with their predicted class labels. Examples: >>> from ultralytics.models.yolo.classify import ClassificationValidator >>> args = dict(model="yolo11n-cls.pt", data="imagenet10") >>> validator = ClassificationValidator(args=args) >>> validator() Notes: Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. """ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): """Initialize ClassificationValidator with dataloader, save directory, and other parameters.""" super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.targets = None self.pred = None self.args.task = "classify" self.metrics = ClassifyMetrics() def get_desc(self): """Return a formatted string summarizing classification metrics.""" return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc") def init_metrics(self, model): """Initialize confusion matrix, class names, and tracking containers for predictions and targets.""" self.names = model.names self.nc = len(model.names) self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify") self.pred = [] self.targets = [] def preprocess(self, batch): """Preprocess input batch by moving data to device and converting to appropriate dtype.""" batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() batch["cls"] = batch["cls"].to(self.device) return batch def update_metrics(self, preds, batch): """Update running metrics with model predictions and batch targets.""" n5 = min(len(self.names), 5) self.pred.append(preds.argsort(1, descending=True)[:, :n5].type(torch.int32).cpu()) self.targets.append(batch["cls"].type(torch.int32).cpu()) def finalize_metrics(self, *args, **kwargs): """Finalize metrics including confusion matrix and processing speed.""" self.confusion_matrix.process_cls_preds(self.pred, self.targets) if self.args.plots: for normalize in True, False: self.confusion_matrix.plot( save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot ) self.metrics.speed = self.speed self.metrics.confusion_matrix = self.confusion_matrix self.metrics.save_dir = self.save_dir def postprocess(self, preds): """Extract the primary prediction from model output if it's in a list or tuple format.""" return preds[0] if isinstance(preds, (list, tuple)) else preds def get_stats(self): """Calculate and return a dictionary of metrics by processing targets and predictions.""" self.metrics.process(self.targets, self.pred) return self.metrics.results_dict def build_dataset(self, img_path): """Create a ClassificationDataset instance for validation.""" return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split) def get_dataloader(self, dataset_path, batch_size): """Build and return a data loader for classification validation.""" dataset = self.build_dataset(dataset_path) return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) def print_results(self): """Print evaluation metrics for the classification model.""" pf = "%22s" + "%11.3g" * len(self.metrics.keys) # print format LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5)) def plot_val_samples(self, batch, ni): """Plot validation image samples with their ground truth labels.""" plot_images( images=batch["img"], batch_idx=torch.arange(len(batch["img"])), cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models fname=self.save_dir / f"val_batch{ni}_labels.jpg", names=self.names, on_plot=self.on_plot, ) def plot_predictions(self, batch, preds, ni): """Plot images with their predicted class labels and save the visualization.""" plot_images( batch["img"], batch_idx=torch.arange(len(batch["img"])), cls=torch.argmax(preds, dim=1), fname=self.save_dir / f"val_batch{ni}_pred.jpg", names=self.names, on_plot=self.on_plot, ) # pred