2025-03-26 11:26:55 +08:00

135 lines
6.2 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset
from ultralytics.data.utils import check_det_dataset
from ultralytics.models.yolo.world import WorldTrainer
from ultralytics.utils import DEFAULT_CFG
from ultralytics.utils.torch_utils import de_parallel
class WorldTrainerFromScratch(WorldTrainer):
"""
A class extending the WorldTrainer for training a world model from scratch on open-set datasets.
This trainer specializes in handling mixed datasets including both object detection and grounding datasets,
supporting training YOLO-World models with combined vision-language capabilities.
Attributes:
cfg (Dict): Configuration dictionary with default parameters for model training.
overrides (Dict): Dictionary of parameter overrides to customize the configuration.
_callbacks (List): List of callback functions to be executed during different stages of training.
Examples:
>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
... train=dict(
... yolo_data=["Objects365.yaml"],
... grounding_data=[
... dict(
... img_path="../datasets/flickr30k/images",
... json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
... ),
... dict(
... img_path="../datasets/GQA/images",
... json_file="../datasets/GQA/final_mixed_train_no_coco.json",
... ),
... ],
... ),
... val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a WorldTrainerFromScratch object with given configuration and callbacks."""
if overrides is None:
overrides = {}
super().__init__(cfg, overrides, _callbacks)
def build_dataset(self, img_path, mode="train", batch=None):
"""
Build YOLO Dataset for training or validation.
This method constructs appropriate datasets based on the mode and input paths, handling both
standard YOLO datasets and grounding datasets with different formats.
Args:
img_path (List[str] | str): Path to the folder containing images or list of paths.
mode (str): 'train' mode or 'val' mode, allowing customized augmentations for each mode.
batch (int, optional): Size of batches, used for rectangular training/validation.
Returns:
(YOLOConcatDataset | Dataset): The constructed dataset for training or validation.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
if mode != "train":
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
dataset = [
build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
if isinstance(im_path, str)
else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
for im_path in img_path
]
return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
def get_dataset(self):
"""
Get train and validation paths from data dictionary.
Processes the data configuration to extract paths for training and validation datasets,
handling both YOLO detection datasets and grounding datasets.
Returns:
(str): Train dataset path.
(str): Validation dataset path.
Raises:
AssertionError: If train or validation datasets are not found, or if validation has multiple datasets.
"""
final_data = {}
data_yaml = self.args.data
assert data_yaml.get("train", False), "train dataset not found" # object365.yaml
assert data_yaml.get("val", False), "validation dataset not found" # lvis.yaml
data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
for d in data["val"]:
if d.get("minival") is None: # for lvis dataset
continue
d["minival"] = str(d["path"] / d["minival"])
for s in ["train", "val"]:
final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
# save grounding data if there's one
grounding_data = data_yaml[s].get("grounding_data")
if grounding_data is None:
continue
grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
for g in grounding_data:
assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
final_data[s] += grounding_data
# NOTE: to make training work properly, set `nc` and `names`
final_data["nc"] = data["val"][0]["nc"]
final_data["names"] = data["val"][0]["names"]
self.data = final_data
return final_data["train"], final_data["val"][0]
def plot_training_labels(self):
"""Do not plot labels for YOLO-World training."""
pass
def final_eval(self):
"""
Perform final evaluation and validation for the YOLO-World model.
Configures the validator with appropriate dataset and split information before running evaluation.
Returns:
(Dict): Dictionary containing evaluation metrics and results.
"""
val = self.args.data["val"]["yolo_data"][0]
self.validator.args.data = val
self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
return super().final_eval()