2025-03-26 11:26:55 +08:00

120 lines
4.8 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import itertools
from ultralytics.data import build_yolo_dataset
from ultralytics.models import yolo
from ultralytics.nn.tasks import WorldModel
from ultralytics.utils import DEFAULT_CFG, RANK, checks
from ultralytics.utils.torch_utils import de_parallel
def on_pretrain_routine_end(trainer):
"""Callback to set up model classes and text encoder at the end of the pretrain routine."""
if RANK in {-1, 0}:
# Set class names for evaluation
names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())]
de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False)
device = next(trainer.model.parameters()).device
trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device)
for p in trainer.text_model.parameters():
p.requires_grad_(False)
class WorldTrainer(yolo.detect.DetectionTrainer):
"""
A class to fine-tune a world model on a close-set dataset.
This trainer extends the DetectionTrainer to support training YOLO World models, which combine
visual and textual features for improved object detection and understanding.
Attributes:
clip (module): The CLIP module for text-image understanding.
text_model (module): The text encoder model from CLIP.
model (WorldModel): The YOLO World model being trained.
data (Dict): Dataset configuration containing class information.
args (Dict): Training arguments and configuration.
Examples:
>>> from ultralytics.models.yolo.world import WorldModel
>>> args = dict(model="yolov8s-world.pt", data="coco8.yaml", epochs=3)
>>> trainer = WorldTrainer(overrides=args)
>>> trainer.train()
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize a WorldTrainer object with given arguments.
Args:
cfg (Dict): Configuration for the trainer.
overrides (Dict, optional): Configuration overrides.
_callbacks (List, optional): List of callback functions.
"""
if overrides is None:
overrides = {}
super().__init__(cfg, overrides, _callbacks)
# Import and assign clip
try:
import clip
except ImportError:
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
import clip
self.clip = clip
def get_model(self, cfg=None, weights=None, verbose=True):
"""
Return WorldModel initialized with specified config and weights.
Args:
cfg (Dict | str, optional): Model configuration.
weights (str, optional): Path to pretrained weights.
verbose (bool): Whether to display model info.
Returns:
(WorldModel): Initialized WorldModel.
"""
# NOTE: This `nc` here is the max number of different text samples in one image, rather than the actual `nc`.
# NOTE: Following the official config, nc hard-coded to 80 for now.
model = WorldModel(
cfg["yaml_file"] if isinstance(cfg, dict) else cfg,
ch=3,
nc=min(self.data["nc"], 80),
verbose=verbose and RANK == -1,
)
if weights:
model.load(weights)
self.add_callback("on_pretrain_routine_end", on_pretrain_routine_end)
return model
def build_dataset(self, img_path, mode="train", batch=None):
"""
Build YOLO Dataset for training or validation.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`.
Returns:
(Dataset): YOLO dataset configured for training or validation.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(
self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train"
)
def preprocess_batch(self, batch):
"""Preprocess a batch of images and text for YOLOWorld training."""
batch = super().preprocess_batch(batch)
# Add text features
texts = list(itertools.chain(*batch["texts"]))
text_token = self.clip.tokenize(texts).to(batch["img"].device)
txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) # torch.float32
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1])
return batch