2025-03-26 11:26:55 +08:00

218 lines
9.3 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import math
import random
from copy import copy
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
A class extending the BaseTrainer class for training based on a detection model.
This trainer specializes in object detection tasks, handling the specific requirements for training YOLO models
for object detection.
Attributes:
model (DetectionModel): The YOLO detection model being trained.
data (Dict): Dictionary containing dataset information including class names and number of classes.
loss_names (Tuple[str]): Names of the loss components used in training (box_loss, cls_loss, dfl_loss).
Methods:
build_dataset: Build YOLO dataset for training or validation.
get_dataloader: Construct and return dataloader for the specified mode.
preprocess_batch: Preprocess a batch of images by scaling and converting to float.
set_model_attributes: Set model attributes based on dataset information.
get_model: Return a YOLO detection model.
get_validator: Return a validator for model evaluation.
label_loss_items: Return a loss dictionary with labeled training loss items.
progress_string: Return a formatted string of training progress.
plot_training_samples: Plot training samples with their annotations.
plot_metrics: Plot metrics from a CSV file.
plot_training_labels: Create a labeled training plot of the YOLO model.
auto_batch: Calculate optimal batch size based on model memory requirements.
Examples:
>>> from ultralytics.models.yolo.detect import DetectionTrainer
>>> args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3)
>>> trainer = DetectionTrainer(overrides=args)
>>> trainer.train()
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
Build YOLO Dataset for training or validation.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`.
Returns:
(Dataset): YOLO dataset object configured for the specified mode.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""
Construct and return dataloader for the specified mode.
Args:
dataset_path (str): Path to the dataset.
batch_size (int): Number of images per batch.
rank (int): Process rank for distributed training.
mode (str): 'train' for training dataloader, 'val' for validation dataloader.
Returns:
(DataLoader): PyTorch dataloader object.
"""
assert mode in {"train", "val"}, f"Mode must be 'train' or 'val', not {mode}."
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train"
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
workers = self.args.workers if mode == "train" else self.args.workers * 2
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
def preprocess_batch(self, batch):
"""
Preprocess a batch of images by scaling and converting to float.
Args:
batch (Dict): Dictionary containing batch data with 'img' tensor.
Returns:
(Dict): Preprocessed batch with normalized images.
"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
if self.args.multi_scale:
imgs = batch["img"]
sz = (
random.randrange(int(self.args.imgsz * 0.5), int(self.args.imgsz * 1.5 + self.stride))
// self.stride
* self.stride
) # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
batch["img"] = imgs
return batch
def set_model_attributes(self):
"""Set model attributes based on dataset information."""
# Nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
# self.args.box *= 3 / nl # scale to layers
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.names = self.data["names"] # attach class names to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
def get_model(self, cfg=None, weights=None, verbose=True):
"""
Return a YOLO detection model.
Args:
cfg (str, optional): Path to model configuration file.
weights (str, optional): Path to model weights.
verbose (bool): Whether to display model information.
Returns:
(DetectionModel): YOLO detection model.
"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Return a DetectionValidator for YOLO model validation."""
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Return a loss dict with labeled training loss items tensor.
Args:
loss_items (List[float], optional): List of loss values.
prefix (str): Prefix for keys in the returned dictionary.
Returns:
(Dict | List): Dictionary of labeled loss items if loss_items is provided, otherwise list of keys.
"""
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def progress_string(self):
"""Return a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"Instances",
"Size",
)
def plot_training_samples(self, batch, ni):
"""
Plot training samples with their annotations.
Args:
batch (Dict): Dictionary containing batch data.
ni (int): Number of iterations.
"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plot metrics from a CSV file."""
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png
def plot_training_labels(self):
"""Create a labeled training plot of the YOLO model."""
boxes = np.concatenate([lb["bboxes"] for lb in self.train_loader.dataset.labels], 0)
cls = np.concatenate([lb["cls"] for lb in self.train_loader.dataset.labels], 0)
plot_labels(boxes, cls.squeeze(), names=self.data["names"], save_dir=self.save_dir, on_plot=self.on_plot)
def auto_batch(self):
"""
Get optimal batch size by calculating memory occupation of model.
Returns:
(int): Optimal batch size.
"""
train_dataset = self.build_dataset(self.trainset, mode="train", batch=16)
max_num_obj = max(len(label["cls"]) for label in train_dataset.labels) * 4 # 4 for mosaic augmentation
return super().auto_batch(max_num_obj)