160 lines
7.4 KiB
Python
160 lines
7.4 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
import concurrent.futures
|
|
import statistics
|
|
import time
|
|
from typing import List, Optional, Tuple
|
|
|
|
import requests
|
|
|
|
|
|
class GCPRegions:
|
|
"""
|
|
A class for managing and analyzing Google Cloud Platform (GCP) regions.
|
|
|
|
This class provides functionality to initialize, categorize, and analyze GCP regions based on their
|
|
geographical location, tier classification, and network latency.
|
|
|
|
Attributes:
|
|
regions (Dict[str, Tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country.
|
|
|
|
Methods:
|
|
tier1: Returns a list of tier 1 GCP regions.
|
|
tier2: Returns a list of tier 2 GCP regions.
|
|
lowest_latency: Determines the GCP region(s) with the lowest network latency.
|
|
|
|
Examples:
|
|
>>> from ultralytics.hub.google import GCPRegions
|
|
>>> regions = GCPRegions()
|
|
>>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
|
|
>>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details."""
|
|
self.regions = {
|
|
"asia-east1": (1, "Taiwan", "China"),
|
|
"asia-east2": (2, "Hong Kong", "China"),
|
|
"asia-northeast1": (1, "Tokyo", "Japan"),
|
|
"asia-northeast2": (1, "Osaka", "Japan"),
|
|
"asia-northeast3": (2, "Seoul", "South Korea"),
|
|
"asia-south1": (2, "Mumbai", "India"),
|
|
"asia-south2": (2, "Delhi", "India"),
|
|
"asia-southeast1": (2, "Jurong West", "Singapore"),
|
|
"asia-southeast2": (2, "Jakarta", "Indonesia"),
|
|
"australia-southeast1": (2, "Sydney", "Australia"),
|
|
"australia-southeast2": (2, "Melbourne", "Australia"),
|
|
"europe-central2": (2, "Warsaw", "Poland"),
|
|
"europe-north1": (1, "Hamina", "Finland"),
|
|
"europe-southwest1": (1, "Madrid", "Spain"),
|
|
"europe-west1": (1, "St. Ghislain", "Belgium"),
|
|
"europe-west10": (2, "Berlin", "Germany"),
|
|
"europe-west12": (2, "Turin", "Italy"),
|
|
"europe-west2": (2, "London", "United Kingdom"),
|
|
"europe-west3": (2, "Frankfurt", "Germany"),
|
|
"europe-west4": (1, "Eemshaven", "Netherlands"),
|
|
"europe-west6": (2, "Zurich", "Switzerland"),
|
|
"europe-west8": (1, "Milan", "Italy"),
|
|
"europe-west9": (1, "Paris", "France"),
|
|
"me-central1": (2, "Doha", "Qatar"),
|
|
"me-west1": (1, "Tel Aviv", "Israel"),
|
|
"northamerica-northeast1": (2, "Montreal", "Canada"),
|
|
"northamerica-northeast2": (2, "Toronto", "Canada"),
|
|
"southamerica-east1": (2, "São Paulo", "Brazil"),
|
|
"southamerica-west1": (2, "Santiago", "Chile"),
|
|
"us-central1": (1, "Iowa", "United States"),
|
|
"us-east1": (1, "South Carolina", "United States"),
|
|
"us-east4": (1, "Northern Virginia", "United States"),
|
|
"us-east5": (1, "Columbus", "United States"),
|
|
"us-south1": (1, "Dallas", "United States"),
|
|
"us-west1": (1, "Oregon", "United States"),
|
|
"us-west2": (2, "Los Angeles", "United States"),
|
|
"us-west3": (2, "Salt Lake City", "United States"),
|
|
"us-west4": (2, "Las Vegas", "United States"),
|
|
}
|
|
|
|
def tier1(self) -> List[str]:
|
|
"""Returns a list of GCP regions classified as tier 1 based on predefined criteria."""
|
|
return [region for region, info in self.regions.items() if info[0] == 1]
|
|
|
|
def tier2(self) -> List[str]:
|
|
"""Returns a list of GCP regions classified as tier 2 based on predefined criteria."""
|
|
return [region for region, info in self.regions.items() if info[0] == 2]
|
|
|
|
@staticmethod
|
|
def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]:
|
|
"""Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation."""
|
|
url = f"https://{region}-docker.pkg.dev"
|
|
latencies = []
|
|
for _ in range(attempts):
|
|
try:
|
|
start_time = time.time()
|
|
_ = requests.head(url, timeout=5)
|
|
latency = (time.time() - start_time) * 1000 # convert latency to milliseconds
|
|
if latency != float("inf"):
|
|
latencies.append(latency)
|
|
except requests.RequestException:
|
|
pass
|
|
if not latencies:
|
|
return region, float("inf"), float("inf"), float("inf"), float("inf")
|
|
|
|
std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0
|
|
return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies)
|
|
|
|
def lowest_latency(
|
|
self,
|
|
top: int = 1,
|
|
verbose: bool = False,
|
|
tier: Optional[int] = None,
|
|
attempts: int = 1,
|
|
) -> List[Tuple[str, float, float, float, float]]:
|
|
"""
|
|
Determines the GCP regions with the lowest latency based on ping tests.
|
|
|
|
Args:
|
|
top (int): Number of top regions to return.
|
|
verbose (bool): If True, prints detailed latency information for all tested regions.
|
|
tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested.
|
|
attempts (int): Number of ping attempts per region.
|
|
|
|
Returns:
|
|
(List[Tuple[str, float, float, float, float]]): List of tuples containing region information and
|
|
latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).
|
|
|
|
Examples:
|
|
>>> regions = GCPRegions()
|
|
>>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
|
|
>>> print(results[0][0]) # Print the name of the lowest latency region
|
|
"""
|
|
if verbose:
|
|
print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")
|
|
|
|
regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
|
|
results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))
|
|
|
|
sorted_results = sorted(results, key=lambda x: x[1])
|
|
|
|
if verbose:
|
|
print(f"{'Region':<25} {'Location':<35} {'Tier':<5} Latency (ms)")
|
|
for region, mean, std, min_, max_ in sorted_results:
|
|
tier, city, country = self.regions[region]
|
|
location = f"{city}, {country}"
|
|
if mean == float("inf"):
|
|
print(f"{region:<25} {location:<35} {tier:<5} Timeout")
|
|
else:
|
|
print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
|
|
print(f"\nLowest latency region{'s' if top > 1 else ''}:")
|
|
for region, mean, std, min_, max_ in sorted_results[:top]:
|
|
tier, city, country = self.regions[region]
|
|
location = f"{city}, {country}"
|
|
print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")
|
|
|
|
return sorted_results[:top]
|
|
|
|
|
|
# Usage example
|
|
if __name__ == "__main__":
|
|
regions = GCPRegions()
|
|
top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3)
|