# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import io
from typing import Any
import cv2
from ultralytics import YOLO
from ultralytics.utils import LOGGER
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
class Inference:
"""
A class to perform object detection, image classification, image segmentation and pose estimation inference.
This class provides functionalities for loading models, configuring settings, uploading video files, and performing
real-time inference using Streamlit and Ultralytics YOLO models.
Attributes:
st (module): Streamlit module for UI creation.
temp_dict (Dict): Temporary dictionary to store the model path and other configuration.
model_path (str): Path to the loaded model.
model (YOLO): The YOLO model instance.
source (str): Selected video source (webcam or video file).
enable_trk (str): Enable tracking option ("Yes" or "No").
conf (float): Confidence threshold for detection.
iou (float): IoU threshold for non-maximum suppression.
org_frame (Any): Container for the original frame to be displayed.
ann_frame (Any): Container for the annotated frame to be displayed.
vid_file_name (str | int): Name of the uploaded video file or webcam index.
selected_ind (List[int]): List of selected class indices for detection.
Methods:
web_ui: Sets up the Streamlit web interface with custom HTML elements.
sidebar: Configures the Streamlit sidebar for model and inference settings.
source_upload: Handles video file uploads through the Streamlit interface.
configure: Configures the model and loads selected classes for inference.
inference: Performs real-time object detection inference.
Examples:
>>> inf = Inference(model="path/to/model.pt") # Model is an optional argument
>>> inf.inference()
"""
def __init__(self, **kwargs: Any):
"""
Initialize the Inference class, checking Streamlit requirements and setting up the model path.
Args:
**kwargs (Any): Additional keyword arguments for model configuration.
"""
check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
import streamlit as st
self.st = st # Reference to the Streamlit module
self.source = None # Video source selection (webcam or video file)
self.enable_trk = False # Flag to toggle object tracking
self.conf = 0.25 # Confidence threshold for detection
self.iou = 0.45 # Intersection-over-Union (IoU) threshold for non-maximum suppression
self.org_frame = None # Container for the original frame display
self.ann_frame = None # Container for the annotated frame display
self.vid_file_name = None # Video file name or webcam index
self.selected_ind = [] # List of selected class indices for detection
self.model = None # YOLO model instance
self.temp_dict = {"model": None, **kwargs}
self.model_path = None # Model file path
if self.temp_dict["model"] is not None:
self.model_path = self.temp_dict["model"]
LOGGER.info(f"Ultralytics Solutions: ✅ {self.temp_dict}")
def web_ui(self):
"""Sets up the Streamlit web interface with custom HTML elements."""
menu_style_cfg = """""" # Hide main menu style
# Main title of streamlit application
main_title_cfg = """
Ultralytics YOLO Streamlit Application
"""
# Subtitle of streamlit application
sub_title_cfg = """Experience real-time object detection on your webcam with the power
of Ultralytics YOLO! 🚀
"""
# Set html page configuration and append custom HTML
self.st.set_page_config(page_title="Ultralytics Streamlit App", layout="wide")
self.st.markdown(menu_style_cfg, unsafe_allow_html=True)
self.st.markdown(main_title_cfg, unsafe_allow_html=True)
self.st.markdown(sub_title_cfg, unsafe_allow_html=True)
def sidebar(self):
"""Configure the Streamlit sidebar for model and inference settings."""
with self.st.sidebar: # Add Ultralytics LOGO
logo = "https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg"
self.st.image(logo, width=250)
self.st.sidebar.title("User Configuration") # Add elements to vertical setting menu
self.source = self.st.sidebar.selectbox(
"Video",
("webcam", "video"),
) # Add source selection dropdown
self.enable_trk = self.st.sidebar.radio("Enable Tracking", ("Yes", "No")) # Enable object tracking
self.conf = float(
self.st.sidebar.slider("Confidence Threshold", 0.0, 1.0, self.conf, 0.01)
) # Slider for confidence
self.iou = float(self.st.sidebar.slider("IoU Threshold", 0.0, 1.0, self.iou, 0.01)) # Slider for NMS threshold
col1, col2 = self.st.columns(2) # Create two columns for displaying frames
self.org_frame = col1.empty() # Container for original frame
self.ann_frame = col2.empty() # Container for annotated frame
def source_upload(self):
"""Handle video file uploads through the Streamlit interface."""
self.vid_file_name = ""
if self.source == "video":
vid_file = self.st.sidebar.file_uploader("Upload Video File", type=["mp4", "mov", "avi", "mkv"])
if vid_file is not None:
g = io.BytesIO(vid_file.read()) # BytesIO Object
with open("ultralytics.mp4", "wb") as out: # Open temporary file as bytes
out.write(g.read()) # Read bytes into file
self.vid_file_name = "ultralytics.mp4"
elif self.source == "webcam":
self.vid_file_name = 0 # Use webcam index 0
def configure(self):
"""Configure the model and load selected classes for inference."""
# Add dropdown menu for model selection
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
if self.model_path: # If user provided the custom model, insert model without suffix as *.pt is added later
available_models.insert(0, self.model_path.split(".pt")[0])
selected_model = self.st.sidebar.selectbox("Model", available_models)
with self.st.spinner("Model is downloading..."):
self.model = YOLO(f"{selected_model.lower()}.pt") # Load the YOLO model
class_names = list(self.model.names.values()) # Convert dictionary to list of class names
self.st.success("Model loaded successfully!")
# Multiselect box with class names and get indices of selected classes
selected_classes = self.st.sidebar.multiselect("Classes", class_names, default=class_names[:3])
self.selected_ind = [class_names.index(option) for option in selected_classes]
if not isinstance(self.selected_ind, list): # Ensure selected_options is a list
self.selected_ind = list(self.selected_ind)
def inference(self):
"""Perform real-time object detection inference on video or webcam feed."""
self.web_ui() # Initialize the web interface
self.sidebar() # Create the sidebar
self.source_upload() # Upload the video source
self.configure() # Configure the app
if self.st.sidebar.button("Start"):
stop_button = self.st.button("Stop") # Button to stop the inference
cap = cv2.VideoCapture(self.vid_file_name) # Capture the video
if not cap.isOpened():
self.st.error("Could not open webcam or video source.")
return
while cap.isOpened():
success, frame = cap.read()
if not success:
self.st.warning("Failed to read frame from webcam. Please verify the webcam is connected properly.")
break
# Process frame with model
if self.enable_trk == "Yes":
results = self.model.track(
frame, conf=self.conf, iou=self.iou, classes=self.selected_ind, persist=True
)
else:
results = self.model(frame, conf=self.conf, iou=self.iou, classes=self.selected_ind)
annotated_frame = results[0].plot() # Add annotations on frame
if stop_button:
cap.release() # Release the capture
self.st.stop() # Stop streamlit app
self.org_frame.image(frame, channels="BGR") # Display original frame
self.ann_frame.image(annotated_frame, channels="BGR") # Display processed frame
cap.release() # Release the capture
cv2.destroyAllWindows() # Destroy all OpenCV windows
if __name__ == "__main__":
import sys # Import the sys module for accessing command-line arguments
# Check if a model name is provided as a command-line argument
args = len(sys.argv)
model = sys.argv[1] if args > 1 else None # Assign first argument as the model name if provided
# Create an instance of the Inference class and run inference
Inference(model=model).inference()