# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from time import time import numpy as np from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults from ultralytics.utils.plotting import colors class SpeedEstimator(BaseSolution): """ A class to estimate the speed of objects in a real-time video stream based on their tracks. This class extends the BaseSolution class and provides functionality for estimating object speeds using tracking data in video streams. Attributes: spd (Dict[int, float]): Dictionary storing speed data for tracked objects. trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated. trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects. trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects. region (List[Tuple[int, int]]): List of points defining the speed estimation region. track_line (List[Tuple[float, float]]): List of points representing the object's track. r_s (LineString): LineString object representing the speed estimation region. Methods: initialize_region: Initializes the speed estimation region. process: Processes input frames to estimate object speeds. store_tracking_history: Stores the tracking history for an object. extract_tracks: Extracts tracks from the current frame. display_output: Displays the output with annotations. Examples: >>> estimator = SpeedEstimator() >>> frame = cv2.imread("frame.jpg") >>> results = estimator.process(frame) >>> cv2.imshow("Speed Estimation", results.plot_im) """ def __init__(self, **kwargs): """ Initialize the SpeedEstimator object with speed estimation parameters and data structures. Args: **kwargs (Any): Additional keyword arguments passed to the parent class. """ super().__init__(**kwargs) self.initialize_region() # Initialize speed region self.spd = {} # Dictionary for speed data self.trkd_ids = [] # List for already speed-estimated and tracked IDs self.trk_pt = {} # Dictionary for tracks' previous timestamps self.trk_pp = {} # Dictionary for tracks' previous positions def process(self, im0): """ Process an input frame to estimate object speeds based on tracking data. Args: im0 (np.ndarray): Input image for processing with shape (H, W, C) for RGB images. Returns: (SolutionResults): Contains processed image `plot_im` and `total_tracks` (number of tracked objects). Examples: >>> estimator = SpeedEstimator() >>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) >>> results = estimator.process(image) """ self.extract_tracks(im0) # Extract tracks annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator # Draw speed estimation region annotator.draw_region(reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2) for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): self.store_tracking_history(track_id, box) # Store track history # Initialize tracking data for new objects if track_id not in self.trk_pt: self.trk_pt[track_id] = 0 if track_id not in self.trk_pp: self.trk_pp[track_id] = self.track_line[-1] # Prepare label with speed if available, otherwise use class name speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)] annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box # Determine if object is crossing the speed estimation region if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s): direction = "known" else: direction = "unknown" # Calculate speed for objects crossing the region for the first time if direction == "known" and track_id not in self.trkd_ids: self.trkd_ids.append(track_id) time_difference = time() - self.trk_pt[track_id] if time_difference > 0: # Calculate speed based on vertical displacement and time self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference # Update tracking data for next frame self.trk_pt[track_id] = time() self.trk_pp[track_id] = self.track_line[-1] plot_im = annotator.result() self.display_output(plot_im) # Display output with base class function # Return results with processed image and tracking summary return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))