# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import numpy as np from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults from ultralytics.utils.plotting import colors class RegionCounter(BaseSolution): """ A class for real-time counting of objects within user-defined regions in a video stream. This class inherits from `BaseSolution` and provides functionality to define polygonal regions in a video frame, track objects, and count those objects that pass through each defined region. Useful for applications requiring counting in specified areas, such as monitoring zones or segmented sections. Attributes: region_template (Dict): Template for creating new counting regions with default attributes including name, polygon coordinates, and display colors. counting_regions (List): List storing all defined regions, where each entry is based on `region_template` and includes specific region settings like name, coordinates, and color. region_counts (Dict): Dictionary storing the count of objects for each named region. Methods: add_region: Adds a new counting region with specified attributes. process: Processes video frames to count objects in each region. """ def __init__(self, **kwargs): """Initializes the RegionCounter class for real-time counting in different regions of video streams.""" super().__init__(**kwargs) self.region_template = { "name": "Default Region", "polygon": None, "counts": 0, "dragging": False, "region_color": (255, 255, 255), "text_color": (0, 0, 0), } self.region_counts = {} self.counting_regions = [] def add_region(self, name, polygon_points, region_color, text_color): """ Add a new region to the counting list based on the provided template with specific attributes. Args: name (str): Name assigned to the new region. polygon_points (List[Tuple]): List of (x, y) coordinates defining the region's polygon. region_color (Tuple): BGR color for region visualization. text_color (Tuple): BGR color for the text within the region. """ region = self.region_template.copy() region.update( { "name": name, "polygon": self.Polygon(polygon_points), "region_color": region_color, "text_color": text_color, } ) self.counting_regions.append(region) def process(self, im0): """ Process the input frame to detect and count objects within each defined region. Args: im0 (np.ndarray): Input image frame where objects and regions are annotated. Returns: (SolutionResults): Contains processed image `plot_im`, 'total_tracks' (int, total number of tracked objects), and 'region_counts' (Dict, counts of objects per region). """ self.extract_tracks(im0) annotator = SolutionAnnotator(im0, line_width=self.line_width) # Ensure self.region is initialized and structured as a dictionary if not isinstance(self.region, dict): self.region = {"Region#01": self.region or self.initialize_region()} # Draw only valid regions for idx, (region_name, reg_pts) in enumerate(self.region.items(), start=1): color = colors(idx, True) annotator.draw_region(reg_pts, color, self.line_width * 2) self.add_region(region_name, reg_pts, color, annotator.get_txt_color()) # Prepare regions for containment check (only process valid ones) for region in self.counting_regions: if "prepared_polygon" not in region: region["prepared_polygon"] = self.prep(region["polygon"]) # Convert bounding boxes to NumPy array for center points boxes_np = np.array([((box[0] + box[2]) / 2, (box[1] + box[3]) / 2) for box in self.boxes], dtype=np.float32) points = [self.Point(pt) for pt in boxes_np] # Convert centers to Point objects # Process bounding boxes & check containment if points: for (point, cls), box in zip(zip(points, self.clss), self.boxes): annotator.box_label(box, label=self.names[cls], color=colors(cls)) for region in self.counting_regions: if region["prepared_polygon"].contains(point): region["counts"] += 1 self.region_counts[region["name"]] = region["counts"] # Display region counts for region in self.counting_regions: annotator.text_label( region["polygon"].bounds, label=str(region["counts"]), color=region["region_color"], txt_color=region["text_color"], ) region["counts"] = 0 # Reset for next frame plot_im = annotator.result() self.display_output(plot_im) return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids), region_counts=self.region_counts)