# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import cv2 import torch from PIL import Image from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import DEFAULT_CFG, ops class ClassificationPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a classification model. This predictor handles the specific requirements of classification models, including preprocessing images and postprocessing predictions to generate classification results. Attributes: args (Dict): Configuration arguments for the predictor. _legacy_transform_name (str): Name of the legacy transform class for backward compatibility. Methods: preprocess: Convert input images to model-compatible format. postprocess: Process model predictions into Results objects. Notes: - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. Examples: >>> from ultralytics.utils import ASSETS >>> from ultralytics.models.yolo.classify import ClassificationPredictor >>> args = dict(model="yolo11n-cls.pt", source=ASSETS) >>> predictor = ClassificationPredictor(overrides=args) >>> predictor.predict_cli() """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize the ClassificationPredictor with the specified configuration and set task to 'classify'.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "classify" self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor" def preprocess(self, img): """Convert input images to model-compatible tensor format with appropriate normalization.""" if not isinstance(img, torch.Tensor): is_legacy_transform = any( self._legacy_transform_name in str(transform) for transform in self.transforms.transforms ) if is_legacy_transform: # to handle legacy transforms img = torch.stack([self.transforms(im) for im in img], dim=0) else: img = torch.stack( [self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0 ) img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 def postprocess(self, preds, img, orig_imgs): """ Process predictions to return Results objects with classification probabilities. Args: preds (torch.Tensor): Raw predictions from the model. img (torch.Tensor): Input images after preprocessing. orig_imgs (List[np.ndarray] | torch.Tensor): Original images before preprocessing. Returns: (List[Results]): List of Results objects containing classification results for each image. """ if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) preds = preds[0] if isinstance(preds, (list, tuple)) else preds return [ Results(orig_img, path=img_path, names=self.model.names, probs=pred) for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]) ]