# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Ultralytics YOLOv8-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs # Model docs: https://docs.ultralytics.com/models/yolov8 # Task docs: https://docs.ultralytics.com/tasks/obb # Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] # YOLOv8n-obb summary: 144 layers, 3228867 parameters, 3228851 gradients, 9.1 GFLOPs s: [0.33, 0.50, 1024] # YOLOv8s-obb summary: 144 layers, 11452739 parameters, 11452723 gradients, 29.8 GFLOPs m: [0.67, 0.75, 768] # YOLOv8m-obb summary: 184 layers, 26463235 parameters, 26463219 gradients, 81.5 GFLOPs l: [1.00, 1.00, 512] # YOLOv8l-obb summary: 224 layers, 44540355 parameters, 44540339 gradients, 169.4 GFLOPs x: [1.00, 1.25, 512] # YOLOv8x-obb summary: 224 layers, 69555651 parameters, 69555635 gradients, 264.3 GFLOPs # YOLOv8.0n backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 3, C2f, [128, True]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C2f, [256, True]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 6, C2f, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 3, C2f, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9 # YOLOv8.0n head head: - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C2f, [512]] # 12 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C2f, [256]] # 15 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 12], 1, Concat, [1]] # cat head P4 - [-1, 3, C2f, [512]] # 18 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 9], 1, Concat, [1]] # cat head P5 - [-1, 3, C2f, [1024]] # 21 (P5/32-large) - [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)