# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # YOLO12-cls image classification model # Model docs: https://docs.ultralytics.com/models/yolo12 # Task docs: https://docs.ultralytics.com/tasks/classify # Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolo12n-cls.yaml' will call yolo12-cls.yaml with scale 'n' # [depth, width, max_channels] n: [0.50, 0.25, 1024] # summary: 152 layers, 1,820,976 parameters, 1,820,976 gradients, 3.7 GFLOPs s: [0.50, 0.50, 1024] # summary: 152 layers, 6,206,992 parameters, 6,206,992 gradients, 13.6 GFLOPs m: [0.50, 1.00, 512] # summary: 172 layers, 12,083,088 parameters, 12,083,088 gradients, 44.2 GFLOPs l: [1.00, 1.00, 512] # summary: 312 layers, 15,558,640 parameters, 15,558,640 gradients, 56.9 GFLOPs x: [1.00, 1.50, 512] # summary: 312 layers, 34,172,592 parameters, 34,172,592 gradients, 126.5 GFLOPs # YOLO12n backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 2, C3k2, [256, False, 0.25]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 2, C3k2, [512, False, 0.25]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 4, A2C2f, [512, True, 4]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 4, A2C2f, [1024, True, 1]] # 8 # YOLO12n head head: - [-1, 1, Classify, [nc]] # Classify