# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import json from collections import defaultdict from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from torch.utils.data import ConcatDataset from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr from ultralytics.utils.ops import resample_segments from ultralytics.utils.torch_utils import TORCHVISION_0_18 from .augment import ( Compose, Format, Instances, LetterBox, RandomLoadText, classify_augmentations, classify_transforms, v8_transforms, ) from .base import BaseDataset from .utils import ( HELP_URL, LOGGER, get_hash, img2label_paths, load_dataset_cache_file, save_dataset_cache_file, verify_image, verify_image_label, ) # Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8 DATASET_CACHE_VERSION = "1.0.3" class YOLODataset(BaseDataset): """ Dataset class for loading object detection and/or segmentation labels in YOLO format. This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box (OBB) tasks using the YOLO format. Attributes: use_segments (bool): Indicates if segmentation masks should be used. use_keypoints (bool): Indicates if keypoints should be used for pose estimation. use_obb (bool): Indicates if oriented bounding boxes should be used. data (dict): Dataset configuration dictionary. Methods: cache_labels: Cache dataset labels, check images and read shapes. get_labels: Returns dictionary of labels for YOLO training. build_transforms: Builds and appends transforms to the list. close_mosaic: Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations. update_labels_info: Updates label format for different tasks. collate_fn: Collates data samples into batches. Examples: >>> dataset = YOLODataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect") >>> dataset.get_labels() """ def __init__(self, *args, data=None, task="detect", **kwargs): """ Initialize the YOLODataset. Args: data (dict, optional): Dataset configuration dictionary. task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ self.use_segments = task == "segment" self.use_keypoints = task == "pose" self.use_obb = task == "obb" self.data = data assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints." super().__init__(*args, **kwargs) def cache_labels(self, path=Path("./labels.cache")): """ Cache dataset labels, check images and read shapes. Args: path (Path): Path where to save the cache file. Returns: (dict): Dictionary containing cached labels and related information. """ x = {"labels": []} nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{self.prefix}Scanning {path.parent / path.stem}..." total = len(self.im_files) nkpt, ndim = self.data.get("kpt_shape", (0, 0)) if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}): raise ValueError( "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of " "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'" ) with ThreadPool(NUM_THREADS) as pool: results = pool.imap( func=verify_image_label, iterable=zip( self.im_files, self.label_files, repeat(self.prefix), repeat(self.use_keypoints), repeat(len(self.data["names"])), repeat(nkpt), repeat(ndim), repeat(self.single_cls), ), ) pbar = TQDM(results, desc=desc, total=total) for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: nm += nm_f nf += nf_f ne += ne_f nc += nc_f if im_file: x["labels"].append( { "im_file": im_file, "shape": shape, "cls": lb[:, 0:1], # n, 1 "bboxes": lb[:, 1:], # n, 4 "segments": segments, "keypoints": keypoint, "normalized": True, "bbox_format": "xywh", } ) if msg: msgs.append(msg) pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt" pbar.close() if msgs: LOGGER.info("\n".join(msgs)) if nf == 0: LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}") x["hash"] = get_hash(self.label_files + self.im_files) x["results"] = nf, nm, ne, nc, len(self.im_files) x["msgs"] = msgs # warnings save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION) return x def get_labels(self): """ Returns dictionary of labels for YOLO training. This method loads labels from disk or cache, verifies their integrity, and prepares them for training. Returns: (List[dict]): List of label dictionaries, each containing information about an image and its annotations. """ self.label_files = img2label_paths(self.im_files) cache_path = Path(self.label_files[0]).parent.with_suffix(".cache") try: cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file assert cache["version"] == DATASET_CACHE_VERSION # matches current version assert cache["hash"] == get_hash(self.label_files + self.im_files) # identical hash except (FileNotFoundError, AssertionError, AttributeError): cache, exists = self.cache_labels(cache_path), False # run cache ops # Display cache nf, nm, ne, nc, n = cache.pop("results") # found, missing, empty, corrupt, total if exists and LOCAL_RANK in {-1, 0}: d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt" TQDM(None, desc=self.prefix + d, total=n, initial=n) # display results if cache["msgs"]: LOGGER.info("\n".join(cache["msgs"])) # display warnings # Read cache [cache.pop(k) for k in ("hash", "version", "msgs")] # remove items labels = cache["labels"] if not labels: LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}") self.im_files = [lb["im_file"] for lb in labels] # update im_files # Check if the dataset is all boxes or all segments lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels) len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) if len_segments and len_boxes != len_segments: LOGGER.warning( f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, " f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. " "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset." ) for lb in labels: lb["segments"] = [] if len_cls == 0: LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}") return labels def build_transforms(self, hyp=None): """ Builds and appends transforms to the list. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms. """ if self.augment: hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 transforms = v8_transforms(self, self.imgsz, hyp) else: transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) transforms.append( Format( bbox_format="xywh", normalize=True, return_mask=self.use_segments, return_keypoint=self.use_keypoints, return_obb=self.use_obb, batch_idx=True, mask_ratio=hyp.mask_ratio, mask_overlap=hyp.overlap_mask, bgr=hyp.bgr if self.augment else 0.0, # only affect training. ) ) return transforms def close_mosaic(self, hyp): """ Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations. Args: hyp (dict): Hyperparameters for transforms. """ hyp.mosaic = 0.0 # set mosaic ratio=0.0 hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic self.transforms = self.build_transforms(hyp) def update_labels_info(self, label): """ Custom your label format here. Args: label (dict): Label dictionary containing bboxes, segments, keypoints, etc. Returns: (dict): Updated label dictionary with instances. Note: cls is not with bboxes now, classification and semantic segmentation need an independent cls label Can also support classification and semantic segmentation by adding or removing dict keys there. """ bboxes = label.pop("bboxes") segments = label.pop("segments", []) keypoints = label.pop("keypoints", None) bbox_format = label.pop("bbox_format") normalized = label.pop("normalized") # NOTE: do NOT resample oriented boxes segment_resamples = 100 if self.use_obb else 1000 if len(segments) > 0: # make sure segments interpolate correctly if original length is greater than segment_resamples max_len = max(len(s) for s in segments) segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples # list[np.array(segment_resamples, 2)] * num_samples segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0) else: segments = np.zeros((0, segment_resamples, 2), dtype=np.float32) label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) return label @staticmethod def collate_fn(batch): """ Collates data samples into batches. Args: batch (List[dict]): List of dictionaries containing sample data. Returns: (dict): Collated batch with stacked tensors. """ new_batch = {} keys = batch[0].keys() values = list(zip(*[list(b.values()) for b in batch])) for i, k in enumerate(keys): value = values[i] if k == "img": value = torch.stack(value, 0) if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}: value = torch.cat(value, 0) new_batch[k] = value new_batch["batch_idx"] = list(new_batch["batch_idx"]) for i in range(len(new_batch["batch_idx"])): new_batch["batch_idx"][i] += i # add target image index for build_targets() new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0) return new_batch class YOLOMultiModalDataset(YOLODataset): """ Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support. This class extends YOLODataset to add text information for multi-modal model training, enabling models to process both image and text data. Methods: update_labels_info: Adds text information for multi-modal model training. build_transforms: Enhances data transformations with text augmentation. Examples: >>> dataset = YOLOMultiModalDataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect") >>> batch = next(iter(dataset)) >>> print(batch.keys()) # Should include 'texts' """ def __init__(self, *args, data=None, task="detect", **kwargs): """ Initialize a YOLOMultiModalDataset. Args: data (dict, optional): Dataset configuration dictionary. task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ super().__init__(*args, data=data, task=task, **kwargs) def update_labels_info(self, label): """ Add texts information for multi-modal model training. Args: label (dict): Label dictionary containing bboxes, segments, keypoints, etc. Returns: (dict): Updated label dictionary with instances and texts. """ labels = super().update_labels_info(label) # NOTE: some categories are concatenated with its synonyms by `/`. labels["texts"] = [v.split("/") for _, v in self.data["names"].items()] return labels def build_transforms(self, hyp=None): """ Enhances data transformations with optional text augmentation for multi-modal training. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms including text augmentation if applicable. """ transforms = super().build_transforms(hyp) if self.augment: # NOTE: hard-coded the args for now. transforms.insert(-1, RandomLoadText(max_samples=min(self.data["nc"], 80), padding=True)) return transforms class GroundingDataset(YOLODataset): """ Handles object detection tasks by loading annotations from a specified JSON file, supporting YOLO format. This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard YOLO format text files. Attributes: json_file (str): Path to the JSON file containing annotations. Methods: get_img_files: Returns empty list as image files are read in get_labels. get_labels: Loads annotations from a JSON file and prepares them for training. build_transforms: Configures augmentations for training with optional text loading. Examples: >>> dataset = GroundingDataset(img_path="path/to/images", json_file="annotations.json", task="detect") >>> len(dataset) # Number of valid images with annotations """ def __init__(self, *args, task="detect", json_file, **kwargs): """ Initialize a GroundingDataset for object detection. Args: json_file (str): Path to the JSON file containing annotations. task (str): Must be 'detect' for GroundingDataset. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ assert task == "detect", "`GroundingDataset` only support `detect` task for now!" self.json_file = json_file super().__init__(*args, task=task, data={}, **kwargs) def get_img_files(self, img_path): """ The image files would be read in `get_labels` function, return empty list here. Args: img_path (str): Path to the directory containing images. Returns: (List): Empty list as image files are read in get_labels. """ return [] def get_labels(self): """ Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image. Returns: (List[dict]): List of label dictionaries, each containing information about an image and its annotations. """ labels = [] LOGGER.info("Loading annotation file...") with open(self.json_file) as f: annotations = json.load(f) images = {f"{x['id']:d}": x for x in annotations["images"]} img_to_anns = defaultdict(list) for ann in annotations["annotations"]: img_to_anns[ann["image_id"]].append(ann) for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"): img = images[f"{img_id:d}"] h, w, f = img["height"], img["width"], img["file_name"] im_file = Path(self.img_path) / f if not im_file.exists(): continue self.im_files.append(str(im_file)) bboxes = [] cat2id = {} texts = [] for ann in anns: if ann["iscrowd"]: continue box = np.array(ann["bbox"], dtype=np.float32) box[:2] += box[2:] / 2 box[[0, 2]] /= float(w) box[[1, 3]] /= float(h) if box[2] <= 0 or box[3] <= 0: continue caption = img["caption"] cat_name = " ".join([caption[t[0] : t[1]] for t in ann["tokens_positive"]]) if cat_name not in cat2id: cat2id[cat_name] = len(cat2id) texts.append([cat_name]) cls = cat2id[cat_name] # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32) labels.append( { "im_file": im_file, "shape": (h, w), "cls": lb[:, 0:1], # n, 1 "bboxes": lb[:, 1:], # n, 4 "normalized": True, "bbox_format": "xywh", "texts": texts, } ) return labels def build_transforms(self, hyp=None): """ Configures augmentations for training with optional text loading. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms including text augmentation if applicable. """ transforms = super().build_transforms(hyp) if self.augment: # NOTE: hard-coded the args for now. transforms.insert(-1, RandomLoadText(max_samples=80, padding=True)) return transforms class YOLOConcatDataset(ConcatDataset): """ Dataset as a concatenation of multiple datasets. This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same collation function. Methods: collate_fn: Static method that collates data samples into batches using YOLODataset's collation function. Examples: >>> dataset1 = YOLODataset(...) >>> dataset2 = YOLODataset(...) >>> combined_dataset = YOLOConcatDataset([dataset1, dataset2]) """ @staticmethod def collate_fn(batch): """ Collates data samples into batches. Args: batch (List[dict]): List of dictionaries containing sample data. Returns: (dict): Collated batch with stacked tensors. """ return YOLODataset.collate_fn(batch) # TODO: support semantic segmentation class SemanticDataset(BaseDataset): """Semantic Segmentation Dataset.""" def __init__(self): """Initialize a SemanticDataset object.""" super().__init__() class ClassificationDataset: """ Extends torchvision ImageFolder to support YOLO classification tasks. This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep learning models, with optional image transformations and caching mechanisms to speed up training. Attributes: cache_ram (bool): Indicates if caching in RAM is enabled. cache_disk (bool): Indicates if caching on disk is enabled. samples (List): A list of tuples, each containing the path to an image, its class index, path to its .npy cache file (if caching on disk), and optionally the loaded image array (if caching in RAM). torch_transforms (callable): PyTorch transforms to be applied to the images. root (str): Root directory of the dataset. prefix (str): Prefix for logging and cache filenames. Methods: __getitem__: Returns subset of data and targets corresponding to given indices. __len__: Returns the total number of samples in the dataset. verify_images: Verifies all images in dataset. """ def __init__(self, root, args, augment=False, prefix=""): """ Initialize YOLO object with root, image size, augmentations, and cache settings. Args: root (str): Path to the dataset directory where images are stored in a class-specific folder structure. args (Namespace): Configuration containing dataset-related settings such as image size, augmentation parameters, and cache settings. augment (bool, optional): Whether to apply augmentations to the dataset. prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification. """ import torchvision # scope for faster 'import ultralytics' # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import if TORCHVISION_0_18: # 'allow_empty' argument first introduced in torchvision 0.18 self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True) else: self.base = torchvision.datasets.ImageFolder(root=root) self.samples = self.base.samples self.root = self.base.root # Initialize attributes if augment and args.fraction < 1.0: # reduce training fraction self.samples = self.samples[: round(len(self.samples) * args.fraction)] self.prefix = colorstr(f"{prefix}: ") if prefix else "" self.cache_ram = args.cache is True or str(args.cache).lower() == "ram" # cache images into RAM if self.cache_ram: LOGGER.warning( "WARNING ⚠️ Classification `cache_ram` training has known memory leak in " "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`." ) self.cache_ram = False self.cache_disk = str(args.cache).lower() == "disk" # cache images on hard drive as uncompressed *.npy files self.samples = self.verify_images() # filter out bad images self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] # file, index, npy, im scale = (1.0 - args.scale, 1.0) # (0.08, 1.0) self.torch_transforms = ( classify_augmentations( size=args.imgsz, scale=scale, hflip=args.fliplr, vflip=args.flipud, erasing=args.erasing, auto_augment=args.auto_augment, hsv_h=args.hsv_h, hsv_s=args.hsv_s, hsv_v=args.hsv_v, ) if augment else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction) ) def __getitem__(self, i): """ Returns subset of data and targets corresponding to given indices. Args: i (int): Index of the sample to retrieve. Returns: (dict): Dictionary containing the image and its class index. """ f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image if self.cache_ram: if im is None: # Warning: two separate if statements required here, do not combine this with previous line im = self.samples[i][3] = cv2.imread(f) elif self.cache_disk: if not fn.exists(): # load npy np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False) im = np.load(fn) else: # read image im = cv2.imread(f) # BGR # Convert NumPy array to PIL image im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) sample = self.torch_transforms(im) return {"img": sample, "cls": j} def __len__(self) -> int: """Return the total number of samples in the dataset.""" return len(self.samples) def verify_images(self): """ Verify all images in dataset. Returns: (List): List of valid samples after verification. """ desc = f"{self.prefix}Scanning {self.root}..." path = Path(self.root).with_suffix(".cache") # *.cache file path try: cache = load_dataset_cache_file(path) # attempt to load a *.cache file assert cache["version"] == DATASET_CACHE_VERSION # matches current version assert cache["hash"] == get_hash([x[0] for x in self.samples]) # identical hash nf, nc, n, samples = cache.pop("results") # found, missing, empty, corrupt, total if LOCAL_RANK in {-1, 0}: d = f"{desc} {nf} images, {nc} corrupt" TQDM(None, desc=d, total=n, initial=n) if cache["msgs"]: LOGGER.info("\n".join(cache["msgs"])) # display warnings return samples except (FileNotFoundError, AssertionError, AttributeError): # Run scan if *.cache retrieval failed nf, nc, msgs, samples, x = 0, 0, [], [], {} with ThreadPool(NUM_THREADS) as pool: results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix))) pbar = TQDM(results, desc=desc, total=len(self.samples)) for sample, nf_f, nc_f, msg in pbar: if nf_f: samples.append(sample) if msg: msgs.append(msg) nf += nf_f nc += nc_f pbar.desc = f"{desc} {nf} images, {nc} corrupt" pbar.close() if msgs: LOGGER.info("\n".join(msgs)) x["hash"] = get_hash([x[0] for x in self.samples]) x["results"] = nf, nc, len(samples), samples x["msgs"] = msgs # warnings save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION) return samples