# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import argparse from typing import Tuple, Union import cv2 import numpy as np import tensorflow as tf import yaml from ultralytics.utils import ASSETS try: from tflite_runtime.interpreter import Interpreter except ImportError: import tensorflow as tf Interpreter = tf.lite.Interpreter class YOLOv8TFLite: """ A class for performing object detection using the YOLOv8 model with TensorFlow Lite. This class handles model loading, preprocessing, inference, and visualization of detection results. Attributes: model (Interpreter): TensorFlow Lite interpreter for the YOLOv8 model. conf (float): Confidence threshold for filtering detections. iou (float): Intersection over Union threshold for non-maximum suppression. classes (Dict[int, str]): Dictionary mapping class IDs to class names. color_palette (np.ndarray): Random color palette for visualization with shape (num_classes, 3). in_width (int): Input width required by the model. in_height (int): Input height required by the model. in_index (int): Input tensor index in the model. in_scale (float): Input quantization scale factor. in_zero_point (int): Input quantization zero point. int8 (bool): Whether the model uses int8 quantization. out_index (int): Output tensor index in the model. out_scale (float): Output quantization scale factor. out_zero_point (int): Output quantization zero point. Methods: letterbox: Resizes and pads image while maintaining aspect ratio. draw_detections: Draws bounding boxes and labels on the input image. preprocess: Preprocesses the input image before inference. postprocess: Processes model outputs to extract and visualize detections. detect: Performs object detection on an input image. """ def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None): """ Initialize an instance of the YOLOv8TFLite class. Args: model (str): Path to the TFLite model file. conf (float): Confidence threshold for filtering detections. iou (float): IoU threshold for non-maximum suppression. metadata (str | None): Path to the metadata file containing class names. """ self.conf = conf self.iou = iou if metadata is None: self.classes = {i: i for i in range(1000)} else: with open(metadata) as f: self.classes = yaml.safe_load(f)["names"] np.random.seed(42) # Set seed for reproducible colors self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3)) # Initialize the TFLite interpreter self.model = Interpreter(model_path=model) self.model.allocate_tensors() # Get input details input_details = self.model.get_input_details()[0] self.in_width, self.in_height = input_details["shape"][1:3] self.in_index = input_details["index"] self.in_scale, self.in_zero_point = input_details["quantization"] self.int8 = input_details["dtype"] == np.int8 # Get output details output_details = self.model.get_output_details()[0] self.out_index = output_details["index"] self.out_scale, self.out_zero_point = output_details["quantization"] def letterbox( self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640) ) -> Tuple[np.ndarray, Tuple[float, float]]: """ Resize and pad image while maintaining aspect ratio. Args: img (np.ndarray): Input image with shape (H, W, C). new_shape (Tuple[int, int]): Target shape (height, width). Returns: (np.ndarray): Resized and padded image. (Tuple[float, float]): Padding ratios (top/height, left/width) for coordinate adjustment. """ shape = img.shape[:2] # Current shape [height, width] # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # Compute padding new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding if shape[::-1] != new_unpad: # Resize if needed img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) return img, (top / img.shape[0], left / img.shape[1]) def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None: """ Draw bounding boxes and labels on the input image based on the detected objects. Args: img (np.ndarray): The input image to draw detections on. box (np.ndarray): Detected bounding box in the format [x1, y1, width, height]. score (np.float32): Confidence score of the detection. class_id (int): Class ID for the detected object. """ x1, y1, w, h = box color = self.color_palette[class_id] # Draw bounding box cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # Create label with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Get text size for background rectangle (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Position label above or below box depending on space label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw label background cv2.rectangle( img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) # Draw text cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]: """ Preprocess the input image before performing inference. Args: img (np.ndarray): The input image to be preprocessed with shape (H, W, C). Returns: (np.ndarray): Preprocessed image ready for model input. (Tuple[float, float]): Padding ratios for coordinate adjustment. """ img, pad = self.letterbox(img, (self.in_width, self.in_height)) img = img[..., ::-1][None] # BGR to RGB and add batch dimension (N, H, W, C) for TFLite img = np.ascontiguousarray(img) img = img.astype(np.float32) return img / 255, pad # Normalize to [0, 1] def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray: """ Process model outputs to extract and visualize detections. Args: img (np.ndarray): The original input image. outputs (np.ndarray): Raw model outputs. pad (Tuple[float, float]): Padding ratios from preprocessing. Returns: (np.ndarray): The input image with detections drawn on it. """ # Adjust coordinates based on padding and scale to original image size outputs[:, 0] -= pad[1] outputs[:, 1] -= pad[0] outputs[:, :4] *= max(img.shape) # Transform outputs to [x, y, w, h] format outputs = outputs.transpose(0, 2, 1) outputs[..., 0] -= outputs[..., 2] / 2 # x center to top-left x outputs[..., 1] -= outputs[..., 3] / 2 # y center to top-left y for out in outputs: # Get scores and apply confidence threshold scores = out[:, 4:].max(-1) keep = scores > self.conf boxes = out[keep, :4] scores = scores[keep] class_ids = out[keep, 4:].argmax(-1) # Apply non-maximum suppression indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten() # Draw detections that survived NMS [self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices] return img def detect(self, img_path: str) -> np.ndarray: """ Perform object detection on an input image. Args: img_path (str): Path to the input image file. Returns: (np.ndarray): The output image with drawn detections. """ # Load and preprocess image img = cv2.imread(img_path) x, pad = self.preprocess(img) # Apply quantization if model is int8 if self.int8: x = (x / self.in_scale + self.in_zero_point).astype(np.int8) # Set input tensor and run inference self.model.set_tensor(self.in_index, x) self.model.invoke() # Get output and dequantize if necessary y = self.model.get_tensor(self.out_index) if self.int8: y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale # Process detections and return result return self.postprocess(img, y, pad) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model", type=str, default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite", help="Path to TFLite model.", ) parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image") parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold") parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold") parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml") args = parser.parse_args() detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata) result = detector.detect(str(ASSETS / "bus.jpg")) cv2.imshow("Output", result) cv2.waitKey(0)